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Alrstrset: Axiridin~glutamate (2-(2-carboxyetbyl)2-rarboxylic acid, (i)4) was syntbesixed by heating 
a-flwromethylglut in base. In neuml solution, 4 wss shown to cyclize to the r_hctone 5 wilb a half life of 4 
ndnutes. fwridino-glummate was shown to irrcversiMy itl&xivatc glutmale racemax by alkylating an active site 
cysteineresidue. Electrospmymass speammetfywasu3edoestabkblhatacmakmbondbadformedandtbalthis 
bond pmects one of the enzyme’s two cystehe residues fman reading with iodoxetate under denim&g cmdidons. 

Analogs of glutamic acid are attractive synthetic targets because of the importance of this amino acid in a 

variety of biological processes. 1 We rue interested in the inhibition of the bacterial enzyme, glutamate racemase. 

tbat provides a source of the “unnatural” D-enantiomer of glutamate for use in cell wall biosynthesik~3 Since 

many bacteria are known to incorporate Dghnamate into theii cell walls. inhibitors of this enzyme may serve as 

broad spectrum antibiotics.4 Furthermore, analogs that mimic the D-configuration would not be expected to 

interfere with other L-glutamate handling biomolecnles. Previous work by Higgins et ck.5 demonstrated that the 

aziridino analog of diaminopimelate, 6, is an irreversible inhibitor of the related enzyme, diaminopimelate 

epimerase. We now report the synthesis of axiridino-glutamate (*)4 (2-(2-carboxyethyl)sxiridine-2-carboxylic 

acid) and demonstrate that it acts as an irreversible inhibitor of Lucrohcillus glutamate racemase. 

The synthesis (Scheme 1) begins with the known alcohol 1 which was prepared in three steps from 

3-benzyloxypropyl magnesium chloride and fluoroacetonitie. 5a The t-butyl ester 2 was then prepared in a 
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single step (48% yield) by oxidation with Cr03(PYridine in the pteseuce of r-butanolketic anhydride. 

Hydrolysis in refluxing HCI afforded racemic a-fluoromethylglutamate (k)3 in 86% yield.7 Heating 3 in 

IN KOH at 85°C for 1.5 hours converts it cleanly into a new compound to which we have assigned the 

strw~re @~)4.~ This synthetic strategy had previously been used to synthesize the aziridino analogue of 

diaminopirnelate@AP), 6.5a The structural assignment of 4 is based on its lH-NMR specmun that displays 

two weakly coupled upfield signals indicative of the aziridine methylene protons (in agreement with the repoti 

spectrum of 6), and on the compounds chemical reactivity. Aziridino-glutamate 4 is stable for several weeks 

when stored in 1N KOH, however, it readily converts to 5 in neutral solution. Lowering the pH protonates the 

aziridine and results in the cyclization to r_lactone 5, as opposed to the disfavored endo cyclizatior~~ which 

would give the Glactone. This reactivity is unlike that of azitidin*DAP, 6, (which is indefinitely stable in 

solution at neutral pH) because of the differences in the length of the side chain. When a solution of 4 in 

KOD/a20 was neutraliz.ed by the addition of KD2po4/D20 and the rate of cyclization was imniediately 

monitored by 1H-NMR specuoscopy, a half-life of approximately 4 minutes (at 25°C) was observed. For this 

mason, the inhibitor was prepared as a 0. IN solution in 1N KOH, and then diluted into buffer and immediately 

added to an enzyme sample in all inhibition studies. 

Glutamate racemase from Lactobrzciflw (EC 5.1.1.3. monomer of Mr 28 kD) belongs to a subset of the 

amino acid racemases that opemte in a cofactor-independent fashion (no pyridoxal phosphate requirement) and 

use two active site cysteine residues2~~~to One of the cysteines serves to deprotonate the C-2 carbon of the 

amino acid, and the other cysteine protonates the resulting intermediate from the opposite face (Figure la). 

Since the enzyme places tbe C-2 of ghuamate proximal to a nucleophilic thiol functionality, it should likewise 

position the aziridine inhibitor 4 appropriately for akylation to occur (Figure 1 b). 
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Figure 1. a) Proposed mechanism of glutamate racemization. b) 

bmd bid 
Proposed mechanism of inactivation by 4. 

Incubation of glutamate racemase with Iti M concentrations of (&)4 leads to a time-dependent irreversible 

loss of enzyme activity (one-half of the racemase activity was lost during a two minute incubation with 0.4 mM 

inhibitor at 25T).ll~*2 The rate of inactivation was decreased by the presence of substrate as expected for an 

active-site directed process. Ssmpies of (rk)4 rapidly lost the ability to irreversibly inhibit the racemase when 

kept at neutral pH and room temperature. This is consistent with the proposal that cyclization to the lactone 5 

destroys the inhibition activity and rules out the possibility that the inhibition is due to a stable, minor impurity. 

The instability of aziridino-glutamate prevented the accurate determination of the inhibition constants. 

Further evidence for covalent attachment was obtained by electrospmy mass spectrometry.13 Samples of 

glutamate raeemase were incubated with and without t mM (i)4 and then subjected to mass spectral analysis 

(Figure 2). The unlabeled enzyme has a mass of 28,309 k4 daltons whereas the inhibitor-treated sample shows 
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a single peak at 28,472 f4 daltons (the difference of 163 f8 cotreqonds well with the 160 dalton mass of 4).14 

No u.nkbeM enzyme was visible in the inhibitor-treated sample. 

The proposed mechanism of action suggests the inhibitor is covalently tagging an active site cysteine (the 

racemase has only two cysteine residues, both in the active she). This was investigatedt3~t5 by incubatiug 

samples of the racemase with and without (i)4, denaturing the samples, treating them with iodoacetate (a 

reagent that reacts rapidly with cysteine residues), and analyzing the masses of the msulting proteins. The 

inhibitor-treated sample shows a single peak (FGgum 3) with a mess that cormsponds to the combined masses of 

the racemase, the inhibitor, and a single acetate adduct (28,528 i4 daltons). The predominant peak in the 

control sample has a mass cormsponding to that of the racemase with two associated acetate units (28,430 *4 

daltons). F%ks with masses corresponding to the unmodifii (28,312 f4 daltons) and the singly-acetate 

laheled (28.370 f4 daltons) peaks were also observed in the control sample. These may have been due to a 

fraction of the enzyme being oxidized to a thermodynamicaUy stable imemal disulfide form16 during the 

incubation period (with low thiol concentration) and then gradually heiig reduced by dithiothmitol after 

denaturation. Since the inactivated sample shows only a single acetate adduct and since the covalently bound 

inhibitor would not be expected to shield an unmodified cysteine residue in the denatured protein, it is 

reasonable to assume that the inhibitor is attached to one of the two cystei~ side chains. 

Aziridino-glutamate has therefore heen shown to zt as an active site-dimcted irreversible inactivator of 

glutamate racemase. Future studies will involve the syntksis and resolution of constrained analogs of aziridino- 

glutamate that cannot cyclire. 
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Figure 2. Figure 3. 
a) Electrospray MS of racemase. 
b) Electrospray MS after treatment with (f)4. 

a) Electrospray MS of mcemase after treatment with iodoacetate 
b) Electrospray MS after treatment with (+$4. then iodoacetate. 
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